Phthalazinones and Pyridopyridazinones from

 2-Oxo-Arylhydrazones Under Microwave Irradiation.Balkis AL-Saleh ${ }^{\mathrm{a}^{*}}$, Noha M. Hilmy ${ }^{\mathrm{b}}$, Morsy Ahmed EL-Apasery ${ }^{\text {a }}$ and Mohamed H. Elnagdi ${ }^{\text {b }}$.
${ }^{\text {a }}$ Chemistry Department; Faculty of Science; University of Kuwait; P.O. Box 5969; Safat; 13060-Kuwait.
${ }^{\text {b }}$ Department of Chemistry; Faculty of Science; Cairo University, Giza; A. R. Egypt
E-mail: shelmy@access.com.eg
Received February 21, 2006

The phenylhydrazones $\mathbf{1 a} \mathbf{- d}$ condensed with ethyl cyanoacetate to yield pyridazinones $\mathbf{2 a - d}$ that reacted with sulphur in presence of piperidine to yield the aminothienopyridazineones $\mathbf{3 a}, \mathbf{b}$ that reacted with electron poor olefins and acetylenes to yield phthalazines $\mathbf{1 0 - 1 2}$. The condensed aminothiophenes $\mathbf{3 a}, \mathbf{b}$ reacted with dimethylformamide dimethylacetal to yield amidines $\mathbf{1 3} \mathbf{a}, \mathbf{b}$. Compounds $\mathbf{2 a}, \mathbf{b}$ condensed with dimethylformamide dimethylacetal to yield the trans enamines $\mathbf{1 6 a}, \mathbf{b}$ that cyclized readily into the pyridopyridazinones $\mathbf{1 7 a}, \mathbf{b}$ on treatment with ammonium acetate in presence of acetic acid. Compounds $\mathbf{2 a}$-d reacted also with benzylidenemalononitrile to yield the phthalazinones 21a-d. The reactions were conducted both by microwave heating and conventional heating. Better yields in much shorter reaction times were achieved by microwave heating.
J. Heterocyclic Chem., 43, 1575 (2006).

In conjunction to previous recent interest in adopting microwaves as energy source for synthesis of polyfunctional heteroaromatics [1-5], we report here efficient synthesis of title compounds utilizing 1a-d as starting materials and microwaves as energy source. The title compounds are biologically interesting molecules and their chemistry and pharmacology is receiving considerable recent interest [6-8]. Moreover utilizing microwaves as environmentally eco-friendly energy sources is being also now explored [9-12].
The starting 1a-d condensed with ethyl cyanoacetate on heating in focused microwave at $170^{\circ} \mathrm{C}$ for 4 minutes in presence of ammonium acetate to yield pyridazinones 2ad in 52 to 62% yields. The same compounds could also be obtained on heating 1a-d with ethyl cyanoacetate in acetic acid and in presence of ammonium acetate for ten hours, in 50 to 55% yields.

The pyridazinones $\mathbf{2 a}$-d readily reacted with sulphur in presence of piperidine on heating in a focused microwave oven for 5 minutes in dioxane as reaction medium to yield aminothienopyridazines $\mathbf{3 a}, \mathbf{b}$ in 74 and 76% yields. Again thienopyridazines 3a,b were obtained in 69 and 72%
yields on refluxing 3a,b with sulphur in DMF solution in presence of piperidine for 4 hours. The synthesis of 2 and 3 is an extension to our previously well-established synthesis 3-carboxylic ester derivatives of 2 and $\mathbf{3}$ [1315].

Compound 3b reacted readily with ethyl acrylate 4, maleimide 5a and N-methylmaleimide 5b in a mixture of acetic acid and dioxane in focused microwave at $210{ }^{\circ} \mathrm{C}$ for 15 minutes and compounds 3a,b reacted with naphthoquinone 6 in ethanol at $100^{\circ} \mathrm{C}$ for 15 minutes in focused microwave to yield products of addition and hydrogen sulphide elimination. These products were also obtained on refluxing $\mathbf{3 a}, \mathbf{b}$ with $\mathbf{4 - 6}$ in the same solvents for 8 hours.

The condensation products of $\mathbf{3}$ with 4-6 were assumed to be formed via intermediary of $4+2$ cycloadducts $7-9$ which readily loses hydrogen sulphide to yield products $\mathbf{1 0 - 1 2}$ respectively. In no case C-1 alkylation products of thiepines similar to those claimed earlier to be formed on reacting thienocoumarin with dimethyl acetylenedicarboxylate and ethyl propiolate were formed [16-20] (Scheme 1).

Reaction of compounds 3a,b with dimethylformamide dimethylacetal (DMFDMA) in focused microwave at 200 ${ }^{\circ} \mathrm{C}$ for 15 minutes in the presence of a few drops of dimethylformamide afforded condensation products 13a,b; no trace of C-1 alkylation products were observed. Compounds 3a upon reflux in $\mathrm{AcOH} / \mathrm{c} . \mathrm{HC} 1$ mixture (3:1 by volume), afforded derivative $\mathbf{1 4}$ whose structure based on the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, that reveal the presence of methylene proton at $\delta_{\mathrm{H}}=c a 4.41$ and $\delta_{\mathrm{C}}=c a$ 32.7 ppm respectively, while compound $\mathbf{3 b}$ when treated

with the same reagent and under the same reaction condition, formed compound 15 (Scheme 2).
Compounds 2a,b reacted with dimethylfrormamide dimethylacetal on heating in focused microwave oven at $180^{\circ} \mathrm{C}$ for 5 minutes or on reflux in DMF for 6 hours. The condensation products were assigned the trans structure 16a,b based on the ${ }^{1} \mathrm{H}$ NMR which showed olefinic doublets at $\sim \delta_{\mathrm{H}} 5.1$ and $8.3(J=12.8 \mathrm{~Hz})$. Cis-olefinic protons should show lower J values $(8-10 \mathrm{~Hz})$. Compounds 16a,b were readily converted into the pyrido[3,4- d]pyridazine-4,5-diones $\mathbf{1 7 a , b}$ on treatment with ammonium acetate and acetic acid in focused microwave oven at $150{ }^{\circ} \mathrm{C}$ for 5 minutes or on reflux in the same mixture for 3 hours. Compounds 2a-d reacted with benzylidenemalononitrile $\mathbf{1 8}$ in pyridine in focused microwave oven at $175^{\circ} \mathrm{C}$ for 5 minutes to yield 21a-d or on reflux in pyridine for 5 hours. This is a further extension to our established phthalazine synthesis [21,22], which is believed to proceed via intermediary of $\mathbf{1 9}$ and 20 (Scheme 3).

In conclusion microwaves heating is an efficient method for obtaining polyfunctionally substituted title compounds in equal or much higher yields than those obtained by conventional heating in much shorter time.

EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded in KBr disks using a Perkin-Elmer System 2000 FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Bruker DPX $400,400 \mathrm{MHz}$ super-conducting NMR spectrometer in deuteriochloroform or dimethylsulfoxide- d_{6} as solvent and TMS as internal standard; chemical shifts are reported in δ units (ppm). Mass spectra were measured on a VG AutospecQ (high resolution, high performance, tri-sector GC/MS/MS).

Microanalyses were performed on a LECO CHNS-932 Elemental Analyzer. Focused microwave experiments were conducted in a CEM Explorer microwave. Compounds 1a was prepared following published procedure [23].

General Procedure for the Preparation of Compounds 1a-d.
The mixture of (3.5 g) of potassium hydroxide in $(100 \mathrm{ml})$ of water, (6.5 g) of ethyl acetoacetate was allowed to stir at room temperature for 24 hours. The solution of potassium acetate was cooled to $0^{\circ} \mathrm{C}$ and (4.5 ml) of concentrated hydrochloric acid in (15 ml) of ice-water was added slowly with stirring, then gradually treated under stirring with a solution of aryldiazonium chloride (prepared from the corresponding aromatic amine (0.01 mol) and the appropriate quantities of both hydrochloric acid and sodium nitrite. The mixture is made basic by addition of (8.2 g) of sodium acetate dissolved in (30 ml) of water. The solid product, so formed, was collected by filtration and crystallized from toluene.
1-(Phenyl-hydrazono)-propan-2-one (1a).
Compound 1a was obtained as yellowish green crystals (1.44 g, 89\%), mp. $152{ }^{\circ} \mathrm{C}\left(\right.$ Lit., $150{ }^{\circ} \mathrm{C}$), ir (KBr) $\boldsymbol{v}_{\text {max }}=3249(\mathrm{NH})$, 1649 (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=162\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl-sulfoxide-d ${ }_{6}$): $\delta=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.93(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$, phenyl-H), 7.17 (t, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}$, phenyl-H), $7.24(\mathrm{~s}, 1 \mathrm{H}$, imineH), $7.29\left(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}\right.$, phenyl-H), $11.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).
Anal. Calcd. For $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ (162.19): C, 66.65; H, 6.21; N, 17.27. Found C, 66.63; H, 6.07; N, 17.27.

1-(p-Tolyl-hydrazono)-propan-2-one (1b).

Compound 1b was obtained as light green crystals (1.06 g , 60%), mp. $128-130{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\max }=3246(\mathrm{NH}), 1652(\mathrm{CO})$ $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=176\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=$ $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{p}-$ tolyl-H), 7.11 (d, 2H, J = 8.6 Hz , p-tolyl-H), 7.21 ($\mathrm{s}, 1 \mathrm{H}$, imine$\mathrm{H}), \quad 11.25 \quad\left(\mathrm{~s}, \quad 1 \mathrm{H}, \quad \mathrm{NH}, \quad \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), ${ }^{13} \mathrm{C} \quad \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=197.0$ (CO), 141.9, 135.0, 131.5, 130.8, 114.4, $25.1\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ (176.22): C, 68.16; H, 6.86; N, 15.90. Found C, 68.26; H, 6.81; N, 15.91.

1-(Phenyl-hydrazono)-butan-2-one (1c).

Compound $\mathbf{1 c}$ was obtained as red crystals ($1.08 \mathrm{~g}, 61 \%$), mp. $150-152^{\circ} \mathrm{C}$, ir (KBr) $v_{\max }=3251(\mathrm{NH}), 1656(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$ $=176\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- $\left.\mathrm{d}_{6}\right): \delta=1.01(\mathrm{~s}, 3 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}, \mathrm{CH}_{3}$), $2.77\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.92(\mathrm{t}, 1 \mathrm{H}, J=7.4$ Hz , phenyl-H), 7.17 (t, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}$, phenyl-H), $7.24(\mathrm{~s}, 1 \mathrm{H}$, imine-H), 7.29 (d, 2H, $J=8 \mathrm{~Hz}$, phenyl-H), $11.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ $\mathrm{D}_{2} \mathrm{O}$ exchangeable), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=200.2$ (CO), 144.3, 134.9, 130.4, 122.5, 114.4, $30.1\left(\mathrm{CH}_{2}\right), 9.5\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ (176.22): C, 68.16; H, 6.86; N, 15.90. Found C, 68.50; H, 6.89; N, 15.92 .

1-(p-Tolyl-hydrazono)-butan-2-one (1d).

Compound 1d was obtained as wine red crystals (1.26 g, 66%), mp. $134-136^{\circ} \mathrm{C}$, ir (KBr) $v_{\max }=3236(\mathrm{NH}), 1651$ (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=190\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=$ $1.01\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75(\mathrm{q}, 2 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), 7.05 (d, 2H, $J=8.4 \mathrm{~Hz}$, p-tolyl-H), $7.10(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}, \mathrm{p}$-tolyl-H), $7.21(\mathrm{~s}, 1 \mathrm{H}$, imine-H), $11.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$,
$\mathrm{D}_{2} \mathrm{O}$ exchangeable), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=200.0$ (CO), 142.0, 134.3, 131.4, 130.4, 114.4, $30.0\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$, $9.5\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ (190.24): C, 69.45; H, 7.42; N, 14.73. Found C, 69.56; H, 7.34; N, 14.73.

General Procedure for the Preparation of Compounds 2a-d.
A mixture of $\mathbf{1 a}-\mathbf{d}(0.01 \mathrm{~mol})$, ethyl cyanoacetate $(1.13 \mathrm{~g}, 0.01$ mol), ammonium acetate (2 g) and acetic acid (0.6 mol) was irradiated in focused microwave at 150 Watt, $170^{\circ} \mathrm{C}$ for 4 minutes, then left to cool and triturated with ethanol. The solid product, so formed, was collected by filtration and crystallized from toluene.
5-Methyl-3-oxo-2-phenyl-2,3-dihydropyridazine-4-carbonitrile (2a).
Compound 2a was obtained as gray crystals ($1.21 \mathrm{~g}, 57 \%$), mp. $158.160{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=2233(\mathrm{CN}), 1659(\mathrm{CO}) \mathrm{cm}^{-1}$; ms: $\mathrm{m} / \mathrm{z}=211\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=2.60(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 7.53-7.55 (m, 5H, phenyl-H), $8.24(\mathrm{~s}, 1 \mathrm{H}$, pyridazine-H), ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(dimethylsulfoxide-d}{ }_{6}$): $\delta=157.0$ (CO), 152.6, 141.5, 139.9, 129.8, 129.7, 126.8, 114.4, 114.0, $19.1\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ (211.22): C, 68.24; H, 4.29; N , 19.89. Found C, 68.37; H, 4.38; N, 19.42.

5-Methyl-3-oxo-2-p-tolyl-2,3-dihydropyridazine-4-carbonitrile (2b).

Compound 2b was obtained as gray crystals ($1.18 \mathrm{~g}, 52 \%$), mp. $209^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\text {max }}=2229(\mathrm{CN}), 1658(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$ $=225\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- $\left.\mathrm{d}_{6}\right): \delta=2.37(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, p-tolyl-H), 7.41 (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, p-tolyl-H), $8.22\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridazine-H), ${ }^{13} \mathrm{C}$ nmr (dimethylsulfoxide- d_{6}): $\delta=157.0$ (CO), 152.4, 139.7, 139.3, 139.1, 130.2, 126.3, 114.5, 113.9, $21.7\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ (225.25): C, 69.32; H, 4.92; N, 18.66. Found C, 69.18; H, 4.90; N, 18.34.

5-Ethyl-3-oxo-2-phenyl-2,3-dihydropyridazine-4-carbonitrile (2c).
Compound 2 c was obtained as light green crystals (1.26 g , $56 \%)$, mp. $100{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=2234(\mathrm{CN}), 1657(\mathrm{CO}) \mathrm{cm}^{-1}$; $\mathrm{ms}: \mathrm{m} / \mathrm{z}=225\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=1.26(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.74\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.47-7.57$ ($\mathrm{m}, 5 \mathrm{H}$, phenyl-H), 8.32 (s, 1H, pyridazine-H), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=157.2$ (CO), 157.0, 141.6, 138.9, 129.8, 129.7, 126.6, 114.2, 113.2, $26.4\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ (225.25): C, 69.32; H, 4.92; N, 18.66. Found C, 69.56; H, 5.05; N, 18.77.

5-Ethyl-3-oxo-2-p-tolyl-2,3-dihydropyridazine-4-carbonitrile (2d).
Compound 2d was obtained as light green crystals (1.49 g , 62%), mp. $91{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=2231(\mathrm{CN}), 1659(\mathrm{CO}) \mathrm{cm}^{-1}$; $\mathrm{ms}: \mathrm{m} / \mathrm{z}=239\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=1.26(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, CH_{2}), 7.31 (d, 2H, $J=8.2 \mathrm{~Hz}$, p-tolyl-H), $7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ Hz , p-tolyl-H), $8.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridazine-H), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethyl-sulfoxide- d_{6}): $\delta=157.2(\mathrm{CO}), 156.8,139.3,139.2,138.8,130.2$, 126.3, 114.2, 113.1, $26.3\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (239.27): C, 70.28; H, 5.48; N, 17.56. Found C, $70.21 ;$ H, 5.52 ; N, 17.51 .

General Procedure for the Preparation of Compounds 3a,b.
To a suspension of compounds $\mathbf{2 a}$ or $\mathbf{2 c}(0.01 \mathrm{~mol})$ in dioxane (2 ml), elemental sulphur ($0.32 \mathrm{~g}, 0.01 \mathrm{~mol}$) and few
drops of piperidine were added. The reaction mixture was irradiated in focused microwave at 150 Watt, $200{ }^{\circ} \mathrm{C}$ for 5 minutes and then poured onto water. The solid product, so formed, was collected by filtration and crystallized from ethanol.

7-Amino-2-p-tolyl-2H-thieno[3,4-d]pyridazin-1-one (3a).
Compound 3a was obtained as green crystals ($1.91 \mathrm{~g}, 74 \%$), $\mathrm{mp} .135{ }^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\text {max }}=3410$ and $3299\left(\mathrm{NH}_{2}\right), 1648(\mathrm{CO})$ $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=257\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- $\left.\mathrm{d}_{6}\right): \delta=$ $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{p}-$ tolyl-H), 7.36 (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, p-tolyl-H), $7.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable). 7.93 (s, 1 H , pyridazine- H), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta=168.1$ (CO), 164.2, 144.5, 141.7, $135.5,134.9,134.4,131.0,109.8,107.8,26.4\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$ (257.31): C, 60.68; H, 4.31; N, 16.33; S, 12.46. Found C, 60.79; H, 4.30; N, 16.30; S, 11.87.

7-Amino-5-methyl-2-phenyl-2H-thieno[3,4- d]pyridazin-1-one (3b).

Compound $\mathbf{3 b}$ was obtained as brown crystals $(1.96 \mathrm{~g}, 76 \%)$, mp. $209{ }^{\circ} \mathrm{C}$, ir (KBr) $\boldsymbol{v}_{\text {max }}=3422$ and $3285\left(\mathrm{NH}_{2}\right), 1627(\mathrm{CO})$ $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=257\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- $\left.\mathrm{d}_{6}\right): \delta=$ $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.27(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$, phenyl-H), $7.33(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). $7.40(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, phenyl-H), $7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, phenyl-H), $8.01(\mathrm{~s}, 1 \mathrm{H}$, pyridazine -H$)$, ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=160.8$ (CO), 159.4, 142.3, 135.4, 129.8, 128.9, 127.3, 126.6, 116.7, 104.2, $12.4\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$ (257.31): C, 60.68; H, 4.31; N, 16.33; S, 12.46. Found C, 60.73; H, 4.34; N, 16.33; S, 12.57.

General Procedure for the Preparation of Compounds $\mathbf{1 0}$ and 11a,b.

A mixture each of maleimide, N-methylmaleimide and ethyl acrylate $(0.01 \mathrm{~mol})$ and $\mathbf{3 b}(2.57 \mathrm{~g}, 0.01 \mathrm{~mol})$ in a mixture of acetic acid (2 ml) and dioxane (2 ml) was irradiated in focused microwave at 250 Watt, $210{ }^{\circ} \mathrm{C}$ for 15 minutes. The reaction mixture was evaporated then washed with ethanol. The solid products, so formed, were collected by filtration and crystallized from dioxane.

Ethyl 5-Amino-8-methyl-4-oxo-3-phenyl-3,4-dihydrophthalaz-ine-6-carboxylate (10).

Compound $\mathbf{1 0}$ was obtained as wine red crystals $(2.23 \mathrm{~g}$, 69%), mp. $185{ }^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\max }=3419$ and $3288\left(\mathrm{NH}_{2}\right), 1687$, 1638 (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=323\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsul-foxide-d d_{6}) $\delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.27\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.41-7.57(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), 8.01 (s, $1 \mathrm{H}, \mathrm{H}-7$), 8.14 (br s, $1 \mathrm{H}, \mathrm{NH} \mathrm{D}_{2} \mathrm{O}$ exchangeable), 8.46 (s , 1 H , pyridazine- H), 9.17 (br s, $1 \mathrm{H}, \mathrm{NH} \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ nmr (dimethylsulfoxide- d_{6}): $\delta=167.5,161.7$ (CO), 152.1, 142.5, 138.4, 137.3, 133.7, 129.8, 128.8, 127.3, 119.1, 113.0, 110.3, $67.3\left(\mathrm{CH}_{2}\right), 18.0\left(\mathrm{CH}_{3}\right), 15.1\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ (323.35): C, 66.86; H, 5.30; N, 13.00. Found C, $66.48 ;$ H, 5.29 ; N, 13.01 .

9-Amino-5-methyl-2-phenyl-2H-pyrrolo[3,4-g]phthalazine-1,6,8trione (11a).

Compound 11a was obtained as yellow crystals $(2.02 \mathrm{~g}$, $63 \%)$, mp. $>300{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=3426$ and $3289\left(\mathrm{NH}_{2}\right), 3180$ (NH), 1751, 1708, $1651(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=320\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$,
$\mathrm{NH}_{2} \mathrm{D}_{2} \mathrm{O}$ exchangeable). $7.43(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}$, phenyl- H), 7.51 $(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, phenyl-H), $7.58(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$, phenylH), 8.56 (br s, $1 \mathrm{H}, \mathrm{NH} \mathrm{D}_{2} \mathrm{O}$ exchangeable). 8.67 (s, 1 H , pyridazine- H), 11.38 (br s. $1 \mathrm{H}, \mathrm{NH}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ nmr (dimethylsulfoxide-d d_{6}): $\delta=170.8,170.0,161.3$ (CO), $146.6,142.1,137.3,136.3,134.6,129.7,129.1,127.1,120.6$, 117.1, 111.3, $12.1\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$ (320.30): C, 63.75; H, 3.78; N , 17.49. Found C, 63.77; H, 3.92; N, 17.69.

9-Amino-5,7-dimethyl-2-phenyl-2 H -pyrrolo[3,4-g]phthalazine-1,6,8-trione (11b).

Compound 11b was obtained as yellow crystals (1.98 g , $59 \%)$, mp. $273{ }^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\max }=3444$ and $3307\left(\mathrm{NH}_{2}\right), 1747$, 1696, $1650(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=334\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=2.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 6.99 (br s, $1 \mathrm{H}, \mathrm{NH}_{2} \mathrm{D}$ exchangeable). $7.44(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}$, phenyl-H), $7.52(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, phenyl-H), $7.61(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.0 Hz , phenyl-H), 8.48 (s, 1H, pyridazine-H), 8.77 (br s, 1 H , $\mathrm{NH} \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta=$ $169.6,169.0,161.5$ (CO), 146.9, 141.5, 136.3, 136.1, 133.7, $129.5,129.0,126.3,120.8,117.6,110.5,24.3\left(\mathrm{CH}_{3}\right), 12.2\left(\mathrm{CH}_{3}\right)$.
Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ (334.33): C, 64.66; H, 4.22; N , 16.76. Found C, $64.23 ;$ H, $4.33 ; \mathrm{N}, 16.77$.

Reaction of Compounds 3a,b with 1,4-Naphthoquinone.
A mixture of each of $\mathbf{3 a}, \mathbf{b}$ (10 mmol) with 1,4 -naphthoquinone ($1.58 \mathrm{~g}, 0.01 \mathrm{~mol}$) in ethanol (4 ml) was irradiated in focused microwave at 125 Watt, $100{ }^{\circ} \mathrm{C}$ for 15 minutes. The solvent was removed and the residue cooled to deposit a solid, which was crystallized from dimethylformamide.
12-Amino-2-p-tolyl-2H-2,3-diazanaphthacene-1,6,11-trione (12a).

Compound 12a was obtained as red crystals ($2.13 \mathrm{~g}, 82 \%$), mp. $264{ }^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\text {max }}=3349$ and $3235\left(\mathrm{NH}_{2}\right), 1658$ (br) (CO), $1573(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=381\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{p}-$ tolyl-H), $7.49(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{p}$-tolyl-H), 7.73-7.81 (m, 2 H , arom -H$), 7.84(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$, arom-H), $8.28(\mathrm{~s}, 1 \mathrm{H}$, pyridazine-H), $8.30(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$, arom-H), $8.38(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}$, arom -H), $9.98\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $)$, 10.21 (br s, $1 \mathrm{H}, \mathrm{NH}_{2} \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{i 3} \mathrm{C} \mathrm{nmr}$ (dimethylsul-foxide- d_{6}): $\delta=184.6,183.3,161.5$ (CO), 154.9, 139.4, 139.1, $139.0,138.8,137.0,135.8,135.4,135.2,134.0,133.1,130.1$, 127.7, 127.6, 126.1, 116.6, 111.5, $21.8\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (381.38): C, 72.43 ; H, 3.96; N, 11.02. Found C, 71.97; H, 4.07; N, 11.27.

12-Amino-5-methyl-2-phenyl-2H-2,3-diazanaphthacene-1,6,11trione (12b).

Compound 12b was obtained as wine red crystals $(3.24 \mathrm{~g}$, 85%), mp. $>300{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\max }=3351$ and $3240\left(\mathrm{NH}_{2}\right), 1650$ (br) (CO), 1593 (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=381\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.45(\mathrm{t}, 1 \mathrm{H}, J=7.2$ Hz , arom -H), $7.54(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, arom-H), $7.63(\mathrm{~d}, 2 \mathrm{H}, J=$ 7.9 Hz , arom-H), $7.74-7.82(\mathrm{~m}, 2 \mathrm{H}$, arom -H$), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.4 Hz , arom-H), $8.27(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$, arom-H), $8.64(\mathrm{~s}, 1 \mathrm{H}$, pyridazine- H), $10.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{,} \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $10.42(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}_{2} \mathrm{D}_{2} \mathrm{O}$ exchangeable).

Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (381.38): C, $72.43 ; \mathrm{H}, 3.96$; N , 11.02. Found C, $72.15 ;$ H, 4.08 ; N, 11.31

General Procedure for the Preparation of Compounds 13a,b.
A solution of each of $\mathbf{3 a}, \mathbf{b}(10 \mathrm{mmol})$ and DMFDMA (1.19 g , 10 mmol) in the presence of a few drops of dimethylformamide was irradiated in focused microwave at 250 Watt, $200^{\circ} \mathrm{C}$ for 15 minutes. The solid products obtained were crystallized from ethanol.
N, N-Dimethyl- N^{\prime}-(4-oxo-3-p-tolyl-3,4-dihydrothieno[3,4- d]pyri-dazin-5-yl) formamidine (13a).

Compound 13a was obtained as brown crystals ($2.00 \mathrm{~g}, 64 \%$), $\mathrm{mp} .198-200{ }^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\text {max }}=1648(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=312$ $\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.12(\mathrm{~s}, 1 \mathrm{H}$, thiopheneH), $7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, p-tolyl-H), $7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, p-tolyl-H), $7.39(\mathrm{~s}, 1 \mathrm{H}$, amidine-H), $8.06(\mathrm{~s}, 1 \mathrm{H}$, pyridazine-H), ${ }^{13} \mathrm{C} \quad \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=167.4$ (CO), 158.4, 157.6, $140.5,136.9,136.2,132.6,130.3,127.2,126.5,112.1,35.1$ (NCH_{3}), $21.6\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$ (312.39): C, 61.52; H, 5.16; N, 17.93; S, 10.26. Found C, 61.47; H, 5.16; N, 17.69; S, 10.01.
N, N-Dimethyl- N '(7-methyl-4-oxo-3-phenyl-3,4-dihydrothieno-$[3,4-d]$ pyridazin- $5-\mathrm{yl}$) formamidine ($\mathbf{1 3 b}$).

Compound 13b was obtained as light green crystals (2.23 g , 71%), mp. $165{ }^{\circ} \mathrm{C}$, ir (KBr) $\mathrm{v}_{\text {max }}=1655(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=$ $312\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.96 (s, 3H, N-CH3), 3.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 7.29-7.47 (m, 5 H , phenyl-H), $7.99(\mathrm{~s}, 1 \mathrm{H}$, amidine- H$), 8.15(\mathrm{~s}, 1 \mathrm{H}$, pyridazine- H$)$, ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=164.0$ (CO), 158.1, 157.6 , $143.0,134.9,129.7,128.9,127.5,127.0,125.6,112.4,35.1$ ($\mathrm{N}-$ $\left.\mathrm{CH}_{3}\right), 13.0\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$ (312.39): C, 61.52; H, 5.16; N , 17.93; S, 10.26. Found C, $61.51 ;$ H, $5.25 ;$ N, 17.82; S, 10.08.

General Procedure for the Preparation of Compounds 14 and 15.

A solution of each of $\mathbf{1 3 a}, \mathbf{b}(0.01 \mathrm{~mol})$ in acetic acid / hydrochloric acid ($4 \mathrm{ml}, 3: 1$ by volume) was refluxed for 3 hrs , and then allowed to cool to room temperature. The solid product so formed was collected by filtration and crystallized from ethanol.
2- p-Tolyl-2H,5H-thieno[3,4-d]pyridazine-1,7-dione (14).
Compound 13a was obtained as green crystals ($1.60 \mathrm{~g}, 62 \%$), $\mathrm{mp} .196^{\circ} \mathrm{C}$, ir (KBr) $v_{\max }=1794$ and $1692(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=$ $258\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 4.41 (s, 2H, CH ${ }^{2}$), 7.28 (d, 2H, $J=7.6 \mathrm{~Hz}$, p-tolyl-H), 7.47 (d, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, p-tolyl-H), $8.15(\mathrm{~s}, 1 \mathrm{H}$, pyridazine- H$),{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta=192.2,155.7(\mathrm{CO}), 139.5,138.6$, 134.6, 131.5, 130.0, 126.1, 125.6, $32.7\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(258.30)$: C, 60.45 ; H, 3.90; N , 10.85; S, 12.41. Found C, 60.37 ; H, 4.08; N, 11.52; S, 12.38.
N-(7-Methyl-4-oxo-3-phenyl-3,4-dihydrothieno[3,4- d]pyridazin5 -yl)acetamide (15).

Compound 13b was obtained as light green crystals $(2.10 \mathrm{~g}$, 70%), mp. $235^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=3306(\mathrm{NH}), 1684$ and 1637 (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=299\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ
$=2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.28-7.59(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $8.07\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridazine-H), $10.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta=167.6,159.7$ (CO), 142.9, 141.2, 134.7, 129.4, 128.2, 127.8, 126.4, 124.9, 112.1, $23.7\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right)$

Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (299.35): C, 60.18; H, 4.38; N, 14.04; S, 10.71. Found C, 60.19; H, 4.44; N, 14.18; S, 10.77.

General Procedure for the Preparation of Compounds 16a,b.

A solution of each of $\mathbf{2 a}, \mathbf{b}(10 \mathrm{mmol})$ and DMFDMA $(1.19 \mathrm{~g}$, 10 mmol) was irradiated in a focused microwave at 150 Watt, $180{ }^{\circ} \mathrm{C}$ for 5 minutes. The solid product obtained was crystallized from dioxane.
5-(2-Dimethylamino-vinyl)-3-oxo-2-phenyl-2,3-dihydropyrida-zine-4-carbonitrile (16a).

Compound 16a was obtained as yellowish green crystals $(1.92 \mathrm{~g}, 72 \%), \mathrm{mp} .225^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) \mathrm{v}_{\text {max }}=2203(\mathrm{CN}), 1616$ (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=266\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=$ 12.8 Hz , vinylic-H), 7.36-7.52 (m, 5H, phenyl-H), $8.32(\mathrm{~d}, 1 \mathrm{H}, J$ $=12.8 \mathrm{~Hz}$, vinylic-H), $8.43(\mathrm{~s}, 1 \mathrm{H}$, pyridazine -H$),{ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=158.4(\mathrm{CO}), 154.1,148.8,142.0$, $134.4,129.5,128.5,126.5,117.2,92.0,90.3,46.1\left(\mathrm{~N}_{-} \mathrm{CH}_{3}\right), 37.8$ $\left(\mathrm{N}-\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (266.30): C, 67.69; H, 5.30; N, 21.04. Found C, $67.58 ;$ H, $5.41 ;$ N, 20.96.

5-(2-Dimethylamino-vinyl)-3-oxo-2-p-tolyl-2,3-dihydropyridazine-4-carbonitrile (16b).

Compound 16b was obtained as green crystals ($2.10 \mathrm{~g}, 75 \%$), $\mathrm{mp} .210^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\text {max }}=2209(\mathrm{CN}), 1630(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$ $=280\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- $\left.\mathrm{d}_{6}\right): \delta=2.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=$ 12.8 Hz , vinylic-H), 7.24 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, p-tolyl-H), 7.37 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, p-tolyl-H), 8.18 (d, $1 \mathrm{H}, J=12.8 \mathrm{~Hz}$, vinylic-H), $8.39\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridazine- H), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=$ 158.4 (CO), 154.0, 148.7, 139.6, 137.9, 134.2, 129.9, 126.1, 117.2, 92.1, 90.2, $46.1\left(\mathrm{~N}^{2} \mathrm{CH}_{3}\right), 37.9\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ (280.32): C, 68.55; H, 5.75; N, 19.99. Found C, 68.52; H, 5.87; N, 19.96.

General Procedure for the Preparation of Compounds 17a,b.
A solution of each of $\mathbf{1 6 a}, \mathbf{b}(0.01 \mathrm{~mol})$, acetic acid (2 ml) and ammonium acetate (1 g) was irradiated in focused microwave at 150 Watt, $150^{\circ} \mathrm{C}$ for 5 minutes, then allowed to cool to room temperature. The solid product so formed was collected by filtration and crystallized from acetic acid.

3-Phenyl-3H,6H-pyrido[3,4-d]pyridazine-4,5-dione (17a).

Compound $\mathbf{1 7 a}$ was obtained as light green crystals (1.87 g , 89%), mp. $298{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=3300(\mathrm{NH}), 1691(\mathrm{CO}) \mathrm{cm}^{-1}$; $\mathrm{ms}: \mathrm{m} / \mathrm{z}=239\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=6.49$ (d, $1 \mathrm{H}, J=6.4 \mathrm{~Hz}$ H-8), $7.39-7.52(\mathrm{~m}, 5 \mathrm{H}$, phenyl-H), $7.80(\mathrm{~d}, 1 \mathrm{H}$, $J=6.4 \mathrm{~Hz}$ H-7), $8.28(\mathrm{~s}, 1 \mathrm{H}$, pyridazine-H), $12.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=159.7$, 157.2 (CO), 154.7, 142.8, 142.3, 139.0, 137.1, 129.6, 127.2, 107.7, 101.7.

Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$ (239.23): C, 65.27; H, 3.79; N, 17.56. Found C, $65.09 ;$ H, 3.98; N, 17.64.

3-p-Tolyl-3H,6H-pyrido[3,4-d]pyridazine-4,5-dione (17b).
Compound 17b was obtained as light green crystals (1.62 g , $64 \%)$, mp. $295{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=3290(\mathrm{NH}), 1689(\mathrm{CO}) \mathrm{cm}^{-1}$; $\mathrm{ms}: \mathrm{m} / \mathrm{z}=253\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- $\left.\mathrm{d}_{6}\right): \delta=2.36(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $6.48(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz} \mathrm{H}-8), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, p-tolyl-H), 7.29 (d, 2H, $J=8.0 \mathrm{~Hz}$, p-tolyl-H), 7.79 (d, 1H, $J=$ $6.4 \mathrm{~Hz} \mathrm{H}-7), 8.25$ (s, 1H, pyridazine-H), $12.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=159.7,157.2$ (CO), 154.8, 142.7, 140.0, 138.2, 136.9, 130.0, 126.8, 107.7, 101.7, $21.7\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ (253.26): C, 66.40; H, 4.38; N, 16.59. Found C, $66.30 ;$ H, $4.45 ;$ N, 16.60 .

General Procedure for the Preparation of Compounds 21a-d.
A solution of each of $\mathbf{2 a - d}(10 \mathrm{mmol})$ in pyridine (3 ml) was treated with benzylidenemalononitrile ($1.54 \mathrm{~g}, 0.01 \mathrm{~mol}$). The reaction mixture was irradiated in a focused microwave at 150 Watt, $175^{\circ} \mathrm{C}$ for 5 minutes, then poured onto water and acidified with dilute hydrochloric acid. The solid product obtained was crystallized from dioxane

5-Amino-4-oxo-3,7-diphenyl-3,4-dihydrophthalazine-6-carbonitrile (21a).

Compound 21a was obtained as gray crystals ($2.21 \mathrm{~g}, 65 \%$), mp. 259-261 ${ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\text {max }}=3455$ and $3301\left(\mathrm{NH}_{2}\right), 2208$ (CN), $1658(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=338\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=6.92$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 7.28 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.43-7.47 ($\mathrm{m}, 1 \mathrm{H}$, arom- H), 7.53-7.57 ($\mathrm{m}, 5 \mathrm{H}$, arom-H), 7.61-7.64 (m, 4H, arom-H), $8.17(\mathrm{~s}, 1 \mathrm{H}$, pyridazineH) ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta=161.0$ (CO), 154.2, 151.5, 141.6, 139.2, 138.1, 134.2, 130.2, 129.6, 129.3, 129.0, 128.9, 126.4, 117.0, 113.8, 110.8, 96.4 .

Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (338.36): C, 74.54; H, 4.17; N, 16.56. Found C, $74.66 ; \mathrm{H}, 4.17$; N, 16.59 .

5-Amino-4-oxo-7-phenyl-3-p-tolyl-3,4-dihydrophthalazine-6carbonitrile (21b).

Compound 21b was obtained as light green crystals (2.36 g , $67 \%)$, mp. $283{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\max }=3454$ and $3302\left(\mathrm{NH}_{2}\right), 2207$ (CN), 1656 (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=352\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide-d ${ }_{6}$): $\delta=2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, 7.31 (d, 2H, $J=8.0 \mathrm{~Hz}$, p-tolyl-H), $7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, p-tolyl-H), 7.56-7.64 (m, 7H, arom-H and NH_{2}), $8.43(\mathrm{~s}, 1 \mathrm{H}$, pyridazine-H), ${ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=161.0(\mathrm{CO})$, 154.6, 151.2, 139.8, 138.6, 138.4, 134.8, 130.4, 130.2, 130.1, $129.8,129.5,127.0,126.3,117.5,114.2,110.7,21.7\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ (352.39): C, 74.98 ; H, 4.58; N, 15.90. Found C, $74.54 ;$ H, 4.72 ; N, 16.22.

5Amino-8-methyl-4-oxo-3,7-diphenyl-3,4-dihydrophthalazine-6-carbonitrile (21c).

Compound 21c was obtained as brown crystals ($2.15 \mathrm{~g}, 61 \%$), $\mathrm{mp} .260^{\circ} \mathrm{C}$, ir $(\mathrm{KBr}) v_{\max }=3464$ and $3322\left(\mathrm{NH}_{2}\right), 2208(\mathrm{CN})$, 1647 (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=352\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.28$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.30-7.33 ($\mathrm{m}, 2 \mathrm{H}$, arom-H), 7.45-7.64 (m, 8H, arom-H), $8.43\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridazine-H), ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(deuteriochloro-}$ form): $\delta=161.1$ (CO), 151.6, 151.0, 141.7, 138.1, 136.8, 132.9, 130.7, 129.9, 129.7, 129.2, 128.9, 126.0, 119.4, 118.8, 112.0, 98.8, $15.4\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ (352.39): C, 74.98; H, 4.58; N , 15.90. Found C, 75.36 ; H, 4.62; N, 15.92.

5-Amino-8-methyl-4-oxo-7-phenyl-3-p-tolyl-3,4-dihydrophthal-azine-6-carbonitrile (21d).
Compound 21d was obtained as yellowish green crystals $(2.50 \mathrm{~g}, 68 \%)$, mp. $238{ }^{\circ} \mathrm{C}$, ir (KBr) $v_{\max }=3454$ and $3310\left(\mathrm{NH}_{2}\right)$, 2207 (CN), 1651 (CO) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=366\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.28 (br s, 2H, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $7.32-7.35(\mathrm{~m}, 4 \mathrm{H}$, arom -H), 7.42-7.47 (m, 2 H , arom- H), $7.50-7.58(\mathrm{~m}, 3 \mathrm{H}$, aromH), $8.59(\mathrm{~s}, 1 \mathrm{H}$, pyridazine- H$),{ }^{13} \mathrm{C} \mathrm{nmr}$ (dimethylsulfoxide- d_{6}): $\delta=161.0(\mathrm{CO}), 152.1,151.0,139.8,138.8,138.4,137.5,133.2$, 130.2, 130.1, 129.6, 126.9, 126.3, 119.3, 117.2, 111.8, 97.8 , $21.7\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right)$.
Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ (366.42): C, 75.39; H, 4.95; N , 15.29. Found C, $74.88 ;$ H, 5.09 ; N, 15.40.

Acknowledgement.
The authors are grateful to University of Kuwait, Research Administration for financial support through project SC 02/02. Analytical facilities provided by SAF are greatly appreciated.

REFERENCES AND NOTES

[1] M. A. Al-Shiekh, A. M. S. El-Din, E. A. Hafez and M. H. Elnagdi, J. Chem. Res., 174 (2004).
[2] M. A. Al-Shiekh, A. M. S. El-Din, E. A. Hafez and M. H. Elnagdi, J. Heterocyclic Chem., 41, 647 (2004).
[3] B. Al-Saleh, H. Bahbehani, M. A. El-Apasery and M. H. Elnagdi, J. Chem. Res., 575 (2004).
[4] B. Al-Saleh, M. A. El-Apasery and M. H. Elnagdi, J. Chem. Res., 578 (2004)..
[5] K. M. Al-Zaydi, R. M. Borik and M. H. Elnagdi, Molecules, 8, 910 (2003).
[6] A. Bhandari, B. Li, M. A. Gallop, J. Synthetic Organic Chemistry, 11, 1951 (1999).
[7] G. P. Miller, E. T. Kool, J.Organic Chemistry, 69, 2404 (2004).
[8] P. Grosche, A. Höltzel, T. B. Walk and A. Trautwein, J. Synthetic Organic Chemistry, 11, 1971 (1999).
[9] J. Clark, P. Macquarriee, "Hand Book of Green Chemistry \& Technology", Blackwell Science, page 402 (2002).
[10] K. Tanaka," Solvent- Free Organic Synthesis", WILEY-VCH GmbH \& Co. KGaA, (2003).
[11] V. Santagada, E. Perissuti and G. Galiendo, Current Medicinal Chemistry, 9,1251 (2002).
[12] P. Lidström, J. Tierney, B. Wathey and J. Westman. Tetradedron, 51, 9225 (2001).
[13] M. H. Elnagdi, N. S. Ibraheim, F. M. Abdelrazek and A. W. Erian, Liebigs Ann. Chem., 909 (1988).
[14] M. H. Elnagdi, N. S. Ibraheim, Sadek and M. H. Mohamed, Liebigs Ann. Chem., 1009 (1988).
[15] H. Al-Awadi, F. Al-Omran, M. H. Elnagdi, L. Infantes, C. Foces-Foces, N. Iagerovic, J. Elguero, Tetrahedron, 51, 12745 (1995).
[16] F. Al-Omran, M. M. Abdelkhalik, H. Al-Awadi and M. H. Elnagdi, Tetrahedron, 52, 11915 (1996).
[17] A. Al-Etaibi, N. Al-Awadi, F. Al-Omran, M. M. Abdelkhalik and M. H. Elnagdi, J. Chem. Res. (S), 4 Ibid. (M). 151 (1999).
[18] M. M. Abdelkhalik, A. M. Negm, A. I. Elkhouly and M. H. Elnagdi, Heteroatom Chemistry, 15, 502 (2004).
[19] E. Nyiondi-Bonguen, E. Sopbue Fondjo, T. Fomum and D. Döpp, J. Chem. Soc. Perkin Trans. 1, 2191 (1994).
[20] F. Al-Omran, N. Al-Awadi, A. Elassar, A. El-Khair, J. Chem. Res. (S), 20 Ibid. (M). 237 (2000).
[21] M. H. Elnagdi, F. M. Abdelrazek, H. S. Ibrahim and A. W.

Evian, Tetrahedron, 45, 3597 (1989).
[22] M. H. Elnagdi, A. M. Negm and K. U. Sadek, Synlett., 27 (1994).
[23] N. Rabjohn, "Organic Synthesis, Collective Volume 4", John Wiley \& Sons, Inc., page 633 (1963).

